
Phytoplankton phenology: 
Shedding light on the dark period 

Marcel Babin, Achim Randelhoff 
with C Marec, E Leymarie, J Lagunas, C Penkerc'h, X Xing, L Lacour, F D'Ortenzio, H Claustre, 

G Darnis, L Fortier, M Sampei, and the Takuvik/LOV teams 

17 September 2020 



Scientific motivations 



I. Entering winter (Babin et al.) 
 

II.Going through it (Randelhoff et al.) 



I. Entering winter 



Deployment during summer 2016 



Babin et al., in prep. 







Fall bloom window in future Arctic 

J. Sansoulet,  
2019 



Lebrun et al. (2019) 

RCP8.5 



Day when Z0.415 reaches surface – day of freeze-up 



II- Going through winter 





Chl a 
fluorescence 

particulate 
backscattering 
at 700 nm  

Randelhoff et al., in prep. 



Polar night + sea ice/snow = little light 

Sun elevation angle at 
local nooon 

Sea ice concentration 

Isolume depths 

Randelhoff et al., in prep. 



Behrenfeld (2010) 

2 conditions for winter biomass accumulation: low respiration and low grazing 

At low latitudes, made possible by deep-mixing (= dilution) 



Morin et al. (in press) 

In Arctic, 
respiration in 
microalgae may 
indeed be very low 



(Almost) no zooplankton grazing in winter 

Data source: Circumpolar 
Flaw Lead project, 2007-08 
 
Gerald Darnis 



Winter bloom initiation: 
Positive growth rates in mid-winter 

Randelhoff et al., in prep. 



J. Sansoulet,  
2019 

The ice edge/spring bloom is linked to what’s 
happening during winter 



25 September 2020 



poplarshift.github.io 

Thank you for your attention! 


	Phytoplankton phenology: Shedding light on the dark period
	Scientific motivations
	Diapositive numéro 3
	Diapositive numéro 4
	Deployment during summer 2016
	Diapositive numéro 6
	Diapositive numéro 7
	Diapositive numéro 8
	Fall bloom window in future Arctic
	Diapositive numéro 10
	Diapositive numéro 11
	II- Going through winter
	Diapositive numéro 13
	Diapositive numéro 14
	Polar night + sea ice/snow = little light
	Diapositive numéro 16
	Diapositive numéro 17
	(Almost) no zooplankton grazing in winter
	Winter bloom initiation:�Positive growth rates in mid-winter
	The ice edge/spring bloom is linked to what’s happening during winter
	Diapositive numéro 21
	Diapositive numéro 22




Phytoplankton phenology: Shedding light on the dark period

Marcel Babin, Achim Randelhoff

with C Marec, E Leymarie, J Lagunas, C Penkerc'h, X Xing, L Lacour, F D'Ortenzio, H Claustre, G Darnis, L Fortier, M Sampei, and the Takuvik/LOV teams

17 September 2020























1



Scientific motivations







Entering winter (Babin et al.)



Going through it (Randelhoff et al.)





Entering winter





Deployment during summer 2016









Babin et al., in prep.























Fall bloom window in future Arctic



J. Sansoulet, 

2019







9







Lebrun et al. (2019)

RCP8.5









Day when Z0.415 reaches surface – day of freeze-up





II- Going through winter













13
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M. Lebrun et al.: Arctic sea-ice-free season projected to extend into autumn 81




Table 1. Linear trends in ice retreat and advance dates over 2000–2200 (200 years), and long-term ice advance amplification ratios for the
individual and mean CMIP5 models and for the 1-D model. Trends and ratios are given as median ± interquartile range over the seasonal ice
zone in which trends are significant at a 95 % confidence level (p = 0.05). n/a: not applicable.




rr(days per decade) ra(days per decade) R
long
a/r Reference




CCSM4 �6.6 ± 2.1 13.4 ± 7.3 2.0 ± 0.6 Gent et al. (2011)
CNRM-CM5 �8.0 ± 2.8 13.5 ± 5.9 1.7 ± 0.3 Voldoire et al. (2013)
CSIRO-Mk3-6-0 �6.1 ± 3.3 10.4 ± 4.0 1.7 ± 0.6 Rotstayn et al. (2012)
GISS-E2-H �2.8 ± 0.6 5.1 ± 1.6 1.8 ± 0.4 Schmidt et al. (2014)
MPI-ESM-LR �8.6 ± 2.8 15.2 ± 8.1 1.8 ± 0.4 Giorgetta et al. (2013)
bcc-csm1-1 �5.2 ± 1.3 9.7 ± 2.6 1.9 ± 0.4 Wu et al. (2014)
GISS-E2-R �2.0 ± 0.4 3.4 ± 0.8 1.8 ± 0.3 Schmidt et al. (2014)
HadGEM2-ES �9.1 ± 3.0 18.6 ± 7.6 1.9 ± 0.5 Collins et al. (2011)
IPSL-CM5A-LR �5.7 ± 1.2 11.1 ± 3.8 1.9 ± 0.5 Dufresne et al. (2013)
MEAN CMIP5 �6.0 ± 2.0 11.1 ± 4.6 1.8 ± 0.4
1-D model �4.7 ± n/a 8.2 ± n/a 1.9 ± n/a




ous studies recognise that a typical 5-day temporal filtering
on the input ice concentration is required to get rid of short-
term dynamical events (Stammerjohn et al., 2012; Stroeve et
al., 2016). By contrast, we use 15 days, in order to get rid of
most short-term dynamical ice events, which barely affects
trends in dr and da (see Table S1). Another important issue
is the reference time axis, which varies among authors. To
circumvent the effect of the da discontinuity between 31 De-
cember and 1 January, we define the origin of time on 1 Jan-
uary and count da negatively if it falls between 1 July and
31 December. A safe limit is 1 July because there is no in-
stance of ice advance date between early June and late July
in the satellite record or in CMIP5 simulations. The length of
the ice-free season is defined as the period during which SIC
is lower than 15 %.




The same seasonality diagnostics are computed from
model outputs. Yet, since the long-term ESM simulations
used here only have monthly SIC outputs, we compute the
ice seasonality diagnostics based on monthly SIC fields lin-
early interpolated daily. Such operation drastically reduces
error dispersion but introduces a small systematic bias on dr
(early bias) and da (late bias), on the order of 5 ± 5 (6) days.
These biases were determined from an analogous processing
of satellite records. Dates of ice retreat and advance were de-
rived from a daily interpolation of monthly averaged concen-
tration fields and subsequently compared to direct retrievals
based on daily resolved concentration fields (see Fig. S2).
The identified biases apply to CMIP5 records because er-
rors stem from the processing of data and do not depend on
the type of data used (satellite or CMIP5). These small sys-
tematic biases in model ice retreat and advance dates likely
contribute to the mean model bias compared to satellite data
(Table 1, Fig. 1) but remain small compared to the long-term
signals analysed throughout this paper.




The ice seasonality diagnostics and their spatial distribu-
tion are reasonably well captured by the mean of selected
CMIP5 models over the recent past (Fig. 2). The spatial dis-




Figure 1. Evolution of the ice seasonality diagnostics (ice retreat
date, blue; ice advance date, orange): (a) CMIP5 median and in-
terquartile range, with corresponding range of satellite-derived val-
ues (green rectangles 1980–2015) over the 70–80� N latitude band;
(b) one-dimensional ice–ocean model results. The ice-free period
(Lw), the photoperiod (Lp) and the average polar night (grey rectan-
gle) are also depicted. Note that the systematic difference between
observations and CMIP5 models is reduced when accounting for
the systematic bias due to the daily interpolation of monthly means
in CMIP5 models (see Sect. 2 and Table S2).




tribution of ice seasonality diagnostics varies among models,
reflecting a possible dependence on the mean state or dif-
ferences in the treatment of ice dynamics. Larger errors in
some individual models (Fig. S3) are associated with an in-
accurate position of the ice edge. Overall, ESMs tend to have
a shorter open-water season than observed (Figs. 2a–c and
S3), which is visible in the North Atlantic and North Pacific




www.the-cryosphere.net/13/79/2019/ The Cryosphere, 13, 79–96, 2019
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Table 1. Linear trends in ice retreat and advance dates over 2000–2200 (200 years), and long-term ice advance amplification ratios for the
individual and mean CMIP5 models and for the 1-D model. Trends and ratios are given as median ± interquartile range over the seasonal ice
zone in which trends are significant at a 95 % confidence level (p = 0.05). n/a: not applicable.
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Figure 1. Evolution of the ice seasonality diagnostics (ice retreat
date, blue; ice advance date, orange): (a) CMIP5 median and in-
terquartile range, with corresponding range of satellite-derived val-
ues (green rectangles 1980–2015) over the 70–80� N latitude band;
(b) one-dimensional ice–ocean model results. The ice-free period
(Lw), the photoperiod (Lp) and the average polar night (grey rectan-
gle) are also depicted. Note that the systematic difference between
observations and CMIP5 models is reduced when accounting for
the systematic bias due to the daily interpolation of monthly means
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tribution of ice seasonality diagnostics varies among models,
reflecting a possible dependence on the mean state or dif-
ferences in the treatment of ice dynamics. Larger errors in
some individual models (Fig. S3) are associated with an in-
accurate position of the ice edge. Overall, ESMs tend to have
a shorter open-water season than observed (Figs. 2a–c and
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1A) and the recent North Atlantic Bloom (NAB) study
(March–June 2008) coincides with the eastern edge of
bin NA-12 (pink star in Fig. 1A). For the northernmost
bins (NA-7–NA-12), satellite data were unavailable for a
few weeks each year during midwinter. For all remaining
times and locations, bin values represent means for all




observations within a given eight-day period, averaging
.1200 cloud-free pixels per period (maximum potential
¼ 1800 pixels). Less than 4% of the bin values were
derived from ,200 cloud-free pixels. Within-bin stan-
dard deviations for each eight-day mean value are
shown for Cphyt in Fig. 1B.




FIG. 1. (A) Typical late bloom surface chlorophyll concentrations (Chlsat; note log scale) as observed from the satellite Sea-
viewing Wide Field-of-view Sensor (SeaWiFS) in June 2002. Also shown are the 12 study bins and their designations. Red box:
Figs. 1B, C, 2A, C, 3, and 4A–C show results from bin NA-5. Heavy black box: bins used in Fig. 2B–F. White star: 1989 North
Atlantic Bloom Experiment (NABE) location. Pink star: 2008 North Atlantic Bloom (NAB) study location. (B) Nine-year record
of phytoplankton biomass (Cphyt: black symbols, left axis) and Chlsat (green symbols, right axis) at eight-day resolution for bin NA-
5. Gray bars indicate within-bin standard deviations for Cphyt. (C) Nine-year record of Cphyt (black symbols, left axis, same as panel
B), photosynthetically active radiation (PAR: red line, lower right axis), and mixed layer depth (MLD: blue line, upper right axis)
for bin NA-5. Vertical dashed lines in panels B and C indicate 1 January of each year.
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and D28-83 for the number of cell per ml in the dark. For the
dark period (D), there were four main periods considered: up
to the first month (D0–28), up to the second month (D0–63), up
to the third month (D0–83) and between the first and the third
months (D28–83). For the light return periods (L1, L2), the
periods used for comparisons are specified in the text rela-
tively to time ranges of interest, for example, from 30 min to
3 d of illumination (L130min-3d). To determine whether there
was a significant variation in the measured parameters during
the dark experiment, we used linear mixed models that
included an error term (or random effect) on the culture to




account for the pseudo-replication of the data. For the light
return periods, the mixed effect models also included a fixed
effect on the light experiments (whether it was the first or the
second light return experiment) and an interaction term between
the two fixed effects (time and experiment). To test for temporal
autocorrelation for each measured parameter, models were com-
pared including a first order autocorrelation structure or not.
ΔAIC was computed between each paired model to determine if
the two models showed equivalent power or not. The models
were considered equivalent if ΔAIC <5 and the model without a
first autocorrelation structure was then chosen. For ΔAIC >5, the
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Cells and reserves (a) biovolume (μm3, red) and cell number per ml (blue); (b) cell volume (μm3, red) and lipid droplets cell quota (RFU, blue);
(c) μg carbon (red) and μg nitrogen per cell (blue) of Fragilariopsis cylindrus cultures kept in the dark at 0!C for up to 3 months and then re-exposed to
continuous light of 30 μmol photons m−2 s−1 after 1.5 months or 3 months of darkness for the light return experiments 1 and 2, respectively. Values from
the light return experiments are shown enlarged in Supporting Information Fig. S6. Each point is the mean of the three cultures with the standard devia-
tion as the error bar, except for the carbon points after the first month of darkness from which a divergent culture replicate was discarded (red dots) from
the mean and standard deviation calculations.
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Abstract
Arctic photoautotrophic communities must survive through polar night darkness until light returns in




spring. We tracked changes in the cellular resource allocations and functional capacities of a polar sea-ice dia-
tom, Fragilariopsis cylindrus, to understand acclimation processes in both darkness and during the subsequent
return to light. We measured parameters at specific time-points over 3 months of darkness, and then over 6 d
after a return to light. Measured parameters included cell number and size, cellular carbon and nitrogen quotas,
lipid and pigment contents, concentration of key proteins of the photosynthetic system, photosynthetic param-
eters based on both variable fluorescence and carbon assimilation, and the level of nonphotochemical
quenching. A stable functional state was reached within a few days after the transition to dark and was then
maintained throughout 3 months of darkness. The dark period resulted in a decrease of lipid droplet cell quota
(−6%), chlorophyll a cell quota (−41%) and the maximum carbon fixation rate per cell (−98%). Return to light
after 1.5 months of darkness resulted in a strong induction of nonphotochemical quenching of excitation and a
fast recovery of the maximum carbon fixation rate within 1 d, followed by a rapid increase in the cell number.
Return to light after 3 months of darkness showed an increase of mortality or a profound downregulation
induced over longer periods of darkness.




Diatoms experience a wide range of environmental condi-
tions across the oceans, with some imposing extreme stresses
upon the cells. Light spans one of the largest ranges of envi-
ronmental variation as diatoms may transition from high light
exposure in the sunlit surface layer to darkness due to ocean
mixing or during the night. Beyond diel cycles, diatoms may
survive weeks in total darkness during deep ocean mixing
events (Cullen and Lewis 1988; Marshall and Schott 1999),
and possibly up to centuries during sedimentation events
(McQuoid et al. 2002; Godhe and Härnström 2010; Härnström
et al. 2011). At high latitudes, darkness sometimes lasts as long
as ca. 6 months as a consequence of the sea ice covered with




snow and low or even negative sun elevation during the polar
night. Given the photoautotrophic nature of diatoms, their
survival of a lack of sunlight for up to 6 months is remarkable
and has motivated many studies in the past decades to under-
stand the related acclimation processes.




So far, in experiments studying the response to prolonged dark-
ness, microalgal or diatom cell growth recovered after the imposed
dark period (Table 1). Spore productionmight explain diatom sur-
vival during prolonged darkness (Doucette and Fryxell 1983), but
spores have only rarely been observed in experiments (Peters and
Thomas 1996; Zhang et al. 1998). A “vegetative” or physiological
resting state could be more prevalent for overwintering as resting
cells have the ability to rapidly recover to their active state
(Anderson 1975; Sicko-Goad et al. 1986). Heterotrophic nutrition
has also been considered as ameans for dark survival (Lewin 1953;
White 1974; Hellebust and Lewin 1977), but the extent of its con-
tribution remains uncertain, as it is not always detected (Horner
and Alexander 1972; Popels and Hutchins 2002; McMinn and
Martin 2013).




In several experiments on microalgae, not all on polar dia-
toms, a physiological resting state during prolonged darkness
has been characterized by a low rate of metabolic activities.
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this article.
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Abstract


Arcticphotoautotrophiccommunitiesmustsurvivethroughpolarnightdarknessuntillightreturnsin


spring.Wetrackedchangesinthecellularresourceallocationsandfunctionalcapacitiesofapolarsea-icedia-


tom,Fragilariopsiscylindrus,tounderstandacclimationprocessesinbothdarknessandduringthesubsequent


returntolight.Wemeasuredparametersatspecifictime-pointsover3monthsofdarkness,andthenover6d


afterareturntolight.Measuredparametersincludedcellnumberandsize,cellularcarbonandnitrogenquotas,


lipidandpigmentcontents,concentrationofkeyproteinsofthephotosyntheticsystem,photosyntheticparam-


etersbasedonbothvariablefluorescenceandcarbonassimilation,andthelevelofnonphotochemical


quenching.Astablefunctionalstatewasreachedwithinafewdaysafterthetransitiontodarkandwasthen


maintainedthroughout3monthsofdarkness.Thedarkperiodresultedinadecreaseoflipiddropletcellquota


(−6%),chlorophyllacellquota(−41%)andthemaximumcarbonfixationratepercell(−98%).Returntolight


after1.5monthsofdarknessresultedinastronginductionofnonphotochemicalquenchingofexcitationanda


fastrecoveryofthemaximumcarbonfixationratewithin1d,followedbyarapidincreaseinthecellnumber.


Returntolightafter3monthsofdarknessshowedanincreaseofmortalityoraprofounddownregulation


inducedoverlongerperiodsofdarkness.


Diatomsexperienceawiderangeofenvironmentalcondi-


tionsacrosstheoceans,withsomeimposingextremestresses


uponthecells.Lightspansoneofthelargestrangesofenvi-


ronmentalvariationasdiatomsmaytransitionfromhighlight


exposureinthesunlitsurfacelayertodarknessduetoocean


mixingorduringthenight.Beyonddielcycles,diatomsmay


surviveweeksintotaldarknessduringdeepoceanmixing


events(CullenandLewis1988;MarshallandSchott1999),


andpossiblyuptocenturiesduringsedimentationevents


(McQuoidetal.2002;GodheandHärnström2010;Härnström


etal.2011).Athighlatitudes,darknesssometimeslastsaslong


asca.6monthsasaconsequenceoftheseaicecoveredwith


snowandloworevennegativesunelevationduringthepolar


night.Giventhephotoautotrophicnatureofdiatoms,their


survivalofalackofsunlightforupto6monthsisremarkable


andhasmotivatedmanystudiesinthepastdecadestounder-


standtherelatedacclimationprocesses.


Sofar,inexperimentsstudyingtheresponsetoprolongeddark-


ness,microalgalordiatomcellgrowthrecoveredaftertheimposed


darkperiod(Table1).Sporeproductionmightexplaindiatomsur-


vivalduringprolongeddarkness(DoucetteandFryxell1983),but


sporeshaveonlyrarelybeenobservedinexperiments(Petersand


Thomas1996;Zhangetal.1998).A“vegetative”orphysiological


restingstatecouldbemoreprevalentforoverwinteringasresting


cellshavetheabilitytorapidlyrecovertotheiractivestate


(Anderson1975;Sicko-Goadetal.1986).Heterotrophicnutrition


hasalsobeenconsideredasameansfordarksurvival(Lewin1953;


White1974;HellebustandLewin1977),buttheextentofitscon-


tributionremainsuncertain,asitisnotalwaysdetected(Horner


andAlexander1972;PopelsandHutchins2002;McMinnand


Martin2013).


Inseveralexperimentsonmicroalgae,notallonpolardia-


toms,aphysiologicalrestingstateduringprolongeddarkness


hasbeencharacterizedbyalowrateofmetabolicactivities.
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Arctic mid-winter phytoplankton growth revealed by
autonomous profilers

Achim Randelhoff'2#, Léo Lacour'?, Claudie Marec', Edouard Leymarie®, José Lagunas"“.
Xiaogang Xing®, Gérald Darnis'2, Christophe Penkerc’h*, Makoto Sampei®, Louis Fortier'2,
Fabrizio D'Ortenzio®, Hervé Claustre®, Marcel Babin'?

It is widely believed that during winter and spring, Arctic marine phytoplankton cannot grow until sea ice and
snow cover start melting and transmit sufficient irradiance, but there is little observational evidence for that
paradigm. To explore the life of phytoplankton during and after the polar night, we used robotic ice-avoiding
profiling floats to measure ocean optics and phytoplankton characteristics continuously through two annual cy-
cles in Baffin Bay, an Arctic sea that is covered by ice for 7 months a year. We demonstrate that net phytoplankton
growth occurred even under 100% ice cover as early as February and that it at least partly resulted from photo-
synthesis. This highlights the adaptation of Arctic phytoplankton to extreme low-light conditions, which may be
the key to their survival before seeding the spring bloom.
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