

WP4: Profileurs bio-géochimiques en Arctique

En lien étroit avec la tâche 2.6 : Disposer d'un profileur opérable dans les régions arctiques

Etude de systèmes de détection de glace de mer

Equipes impliquées

- TAKUVIK Unité Mixte Internationale CNRS-Ulaval (UMI 3376)
 - ArcticNet NGCC Amundsen
- LOV Laboratoire d'Océanographie de Villefranche

Planning

Opération	2011	2012	2013	2014	2015	2016
Optimisation des flotteurs biogéochimiques pour l'Arctique						
Essais en Baie de Baffin	 					
Déploiement de l'ensemble des flotteurs	 					
Redéploiement de l'ensemble de la flotte						
Redéploiement de l'ensemble de la flotte	I I I					

Bilan juin 2012

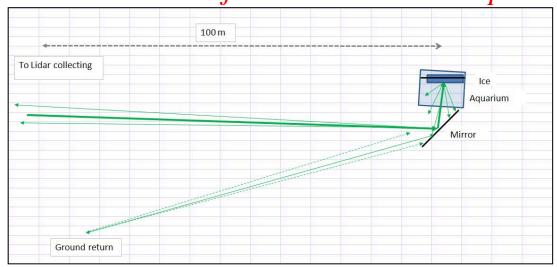
Réalisations (voir tâche 2.6):

- Livraison première version du livre blanc
- Résultats des tests en labo avec INO et RDDC pour solutions de détection optique de la glace (mars 2012).
- Collaboration IAOOS/NAOS
- Divers

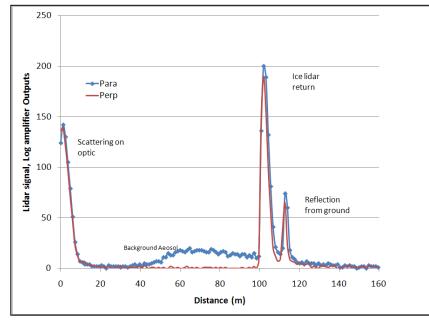
Bilan juin 2012

Tests en labo avec RDDC et INO (5 mars 2012): pour rappel

- Mesure du signal lidar de RDDC en polarisation (échantillon de glace de mer/eau de mer) dans un aquarium.
- discriminer l'interface air/eau de eau/glace, en l'occurrence car la glace est probablement un très bon dépolarisant.
- ➤ Mesure du signal avec le Leddar de l'INO (échantillon de glace de mer/eau de mer) dans un aquarium; il s'agit d'un lidar utilisant des leds comme source (Leddartech).



pas de retour de l'INO à ce jour.



Bilan juin 2012: Résultats préliminaires des tests avec RDDC

Concept de mesure de discrimination de la glace par Lidar en dépolarisation

crédit RDDC: Gilles ROY

Laser pulsé 532nm (80mJ)

Bilan juin 2012:Résultats préliminaires des tests avec RDDC

glace de mer

Test	Depolarization ratio		
Sea water (SW)	0.04		
SW, 4 cm Ice	0.75		
SW, 2.5 cm Ice	0.70		
SW, 2.5 cm Ice Flip over	0.47		
SW, 5 cm Artif. Ice	0.76		
SW, Thin Ice	0.46		
SW, Very Thin Ice	0.05		
SW	0.05		

glace de mer+ eau colorée

Test	Depolarization ratio
SW + dye	0.07
SW + dye, Spectalon (W)	0.42
SW + dye, Spectalon (B)	0.04
SW + dye, 4 cm Ice	0.25
SW, thin ice-transparent	0.03

glace de mer + Maalox

Test	Depolarization ratio		
SW, Spectralon (W)	0.59		
SW, Spectralon (B)	0.04		
SW, Ice Natural, 3 cm	0.30		
SW + Maalox	0.04		
SW + Maalox, 3 cm Natura	0.09		

Résultats
crédit RDDC: Gilles ROY

Bilan juin 2012: Résultats préliminaires des tests avec RDDC

Conclusions:

- ✓ La glace de mer dépolarise fortement la lumière.
- ✓ La glace dépolarise la lumière, mais pas autant que la glace de mer.
- ✓ Les colorants modifient légèrement les signatures en dépolarisation.
- ✓ L'eau rendue hautement turbide (Maalox) modifie les signatures en dépolarisation.

La détection de glace basée sur la signature polarimétrique d'un lidar est tout à fait possible.

RDDC développe un prototype de lidar miniaturisé et marinisé sur ses fonds propres (livrable décembre 2012).

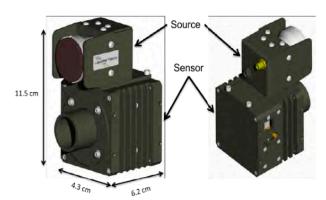
Résultats
crédit RDDC: Gilles ROY

Bilan juin 2012:Tests en labo avec RDDC & INO mars 2012

Leddar (rouge) de l'INO: mesures en direct sous l'aquarium

LeddarTech inc. 2740 Einstein Quebec, QC CANADA info@leddartech.com www.leddartech.com **Technical Specification**

Leddar™ Development Kit



The Leddar[™] development kit is a time-of-flight sensor module based on LED illumination with multiple field-of-view capability assembled in a compact enclosure.

1 Components & Mechanical Design

The Leddar™ development kit includes:

- Sensor unit with optical filter;
- IR illumination source with corresponding optics;
- Power supply;
- · Software development kit with visualisation and data logging tools.

Front view

Rear view

2 Leddar[™] Sensor

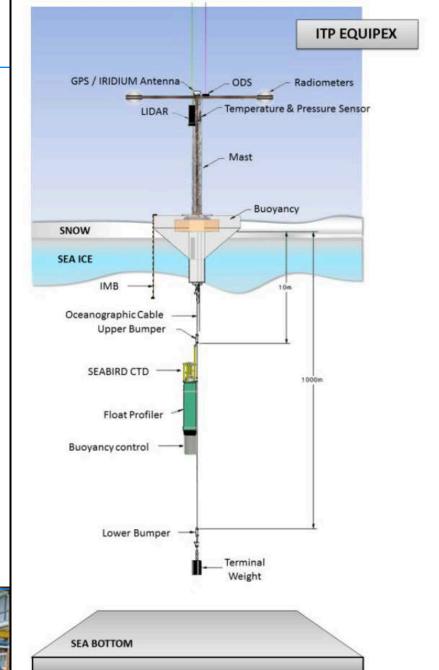
The LeddarTM sensor has 16 fields-of-view with simultaneous acquisition capability. The typical total horizontal field-of-view opening is 32° with a vertical field-of-view opening of 4°. Different horizontal optical configurations are also available from 18° to 85°

Bilan juin 2012

Collaboration avec S. Thibault (Chaire Industrielle de l'Université Laval)

En parallèle du prototype RDDC:

mise en place d'une collaboration avec S.Thibault, titulaire d une Chaire Industrielle en conception optique à l'Université Laval

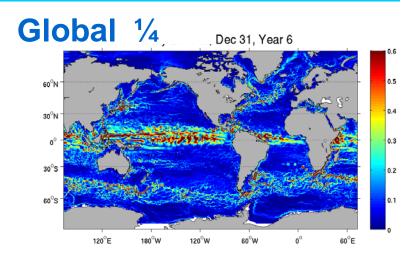

Développement d'un premier système simple in-situ miniaturisé et basse consommation afin d'étudier les capacités d'un système utilisable sur Profileur. L'étude de ce système est confiée à l'équipe de Simon Thibault qui détient la Chaire Industrielle en conception optique de l'Université Laval. (développement sur fonds propres Takuvik).

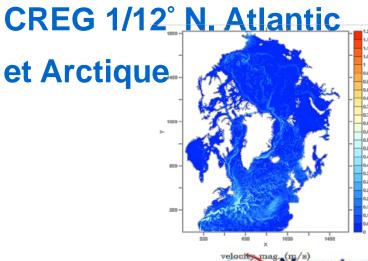
Collaboration NAOS/IAOOS: →

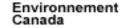
Déploiement de flotteurs bio-géochimiques type NAOS-Arctique sous plateformes ITP IAOOS.

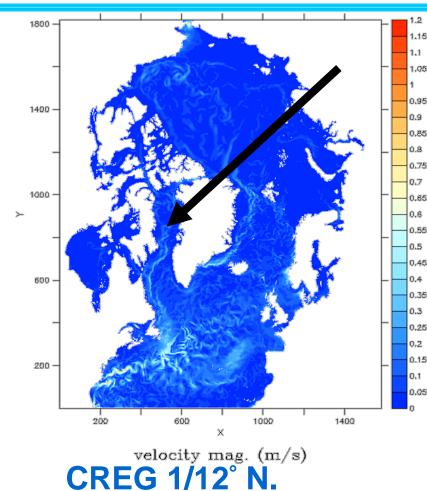
Bilan juin 2012

- **Collaboration NAOS/IAOOS:** →
- ✓ Différentes réunions(IAOOS, TAKUVIK, LOV, NKE): description des besoins respectifs et discussion des possibilités techniques sur la base de 3 devis NKE
- carte vecteur APMT + carte science OSEAN
- carte vecteur I535 + carte science ASICA
 - ✓ Pour la partie IAOOS une seule carte vecteur est suffisante pour CTD+optode SBE
 - ✓ Sur la base d'une fédération de moyens IAOOS/NAOS/CERC, 10 flotteurs biogéochimiques seront installés sur ITP (sur une flotte de 23) dont 2 dès 2013


Bilan juin 2012


- **Divers:**
- ✓ Echanges avec AWI et IOPAN au sujet d'ISA Arctique
- ✓ Echanges avec Nortek
- ✓ Acquisition d'un simulateur APMT sur fonds propres Takuvik
- ✓ Inventaire documenté des lieux (et infrastructures), expertises et logistique pour tests en condition de glace
- ✓ Echantillonnage de glace de mer par DRDC (mission été 2012)
- ✓ Mise en place collaboration avec modélisateur: optimisation des trajectoires de flotteurs en Mer de Baffin (diaporama joint)


- Entente formelle canadienne entre 3 départements fédéraux pour développer l' océanographie opérationnelle
- CONCEPTS
- « Canadian Operationnel Network of Coupled **Environmental Prediction Systems** »
- CONCEPTS collabore avec MERCATOR-OCEAN
 - Utilisation de NEMO 3.4
 - Collaboration sur SAM2
 - Collaboration sur des configs. Commun
 - MOU en développement



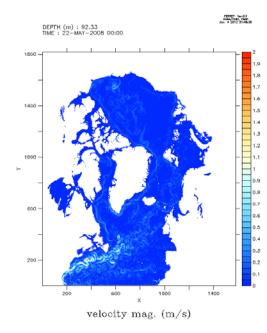
OBJECTIFS CONCEPTS \rightarrow TAKUVIK

- Utiliser la config CREG12 en Mer de Battin pour:
 - supporter la stratégie des déploiements des flotteurs UMI TAKUVIK
 - Tester les scenarios de largage
 - Tester les scenarios pour bien choisir le comportement des flotteurs pour rester en Mer de Baffin
 - suivre et faire la prévision de la trajectoire des flotteurs NAOS de l' UMI TAKUVIK
 - Valider les produits océanographiques opérationnels pour « diriger » les flotteurs

Assimiler les données de bouées NAOS (profils T&S) dans la mer de Baffin

Canada

OBJECTIFS CONCEPTS \rightarrow TAKUVIK


2012-2013

- Utilisation du programme de derive offline ARIANE* pour le drift des flotteurs.
- Hindcasts CREG12 pour optimiser les stratégies de déploiement.
 - Pas d'assimilation, mais le hindcast produit des comportements réalistes.

2013-2014

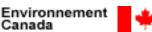

réel

Utilisation du système CREG12 en opération a Environnent Canada avec projections de drift ARIANE* en temps quasi

*Ariane: Blanke et al. Laboratoire de Physique des Oceans (LPO

Équi pe CONCEPTS Régional e

- Pèches et Océan Canada
 - Terre Neuve, St. John's: Fraser Davidson, Charlie Bishop, Jennifer Wells, Jeff Laham, Qiang Wang
 - Halifax: Youyu Lu, Ji Lei, Shannon Nudds et Simon Higginson
- Environnement Canada
 - Greg Smith
 - Frederic Dupont
 - Jean-Francois Lemieux
 - Francois Roy
- **UQAR**: Simon Senneville
- **MERCATOR-OCEAN:** Gilles Garric



Pêches et Océans

Plan de travail 2012

- ✓ Familiarisation sur simulateur APMT (livraison été 2012)
- ✓ Prototype RDDC (marinisation) livrable en décembre 2012
- ✓ Definition de protocoles pour la caractérisation des capteurs optiques en eau froide
- ✓ Definition de protocoles de tests du prototype de détection optique (automne 2012)
- ✓ Mise en place de tests du prototype de détection optique (printemps 2013)

